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The reasons that accelerated first order optimization methods appear 

attractive for atmospheric trajectory work are reviewed and the possibilities 

for extending such methods to handle constraints are examined. Difficulties 

arising with the gradient projection technique, in conjunction with these methods, 

recommend the adoption of penalty function approximation for treatment of con- 

straints. Parameterization via spline polynomials is investigated briefly, and 

is found promising when used in conjunction with a time scale stretching device. 

Two sets of recommendations are offered for modification of a gradient 

projection supersonic transport trajectory optimization computer program, one 

a minimum revision featuring the continuous conjugate gradient algorithm, and 

the second a rather major revision incorporating splines, the Davidon algorithm 

and a difference adjoint scheme for circumventing truncation error effects. 

Listings summarizing program changes appropriate to these recommendations 

are then presented. 
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INTRODUCTION 

Numerical trajectory optimization for aircraft flight presents particular 

difficulty because the problem entails relatively complex equations, generally 

long flight times, and tendencies toward numerical error  magnification. The 

classical indirect method, numerical integration of the coupled Euler/state sys- 

tem of differential equations, suffers from instability and severe error  magnifi- 

cation, while first order direct methods exhibit slow convergence for many types 

of problem, especially those whose solutions are long trajectories. Second order 

direct methods become unduly complex in the case of atmospheric flight, and the 

linearized state/Euler system common to all of these is subject, more or less, 

to the same basic instability phenomenon as the indirect method. 

For these reasons it is of interest to examine the possibilities offered by 

accelerated first order methods, although these are sufficiently new in trajectory 

optimization applications as not yet to have been proved out even in relatively easy 

types of problem. The methods referred to consist of the conjugate gradient method 

and the Davidon variable metric method, both of these being candidates if the vari- 

ational problem is first made into a parameter optimization problem by one means 

or  another, while only the first is a serious contender for treatment of the con- 

tinuous case. 

In the following, we first review the algorithms and then examine the pos- 

sibilities for extension to constrained problems via the two standard techniques of 

projection and p e d @  function approximation. After this, the problem of parameteri- 

zation is taken up with special attention to possible use of spline approximation. 

Finally, some recommendations are advanced on features to be incorporated into 

new computer programs and possible revisions and extensions of existing programs, 

specifically an existing gradient projection program for supersonic transport flight 

path optimization. These recommendations lean heavily upon recent research results 

of the authors and are somewhat tentative because of limited computational experience. 
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REVIEW O F  THE ALGORITHMS 

To find the minimum of a function f of an n-vector x, which is smooth 

enough to possess continuous second partial derivatives, a series of steps in 

so-called conjugate directions may be taken, meaning steps Ax. orthogonal to 
1 

gradient increments A f 
X. 

1 

Y i > j  
T 
x. 1 

J 
Af Ax. = 0 

If the magnitude of each step is taken such as to minimize f( x )  in the direction 

taken, the process converges to the minimum in n steps for quadratic f ,  

Conjugate directions are generated by the conjugate gradient algorithm 

AX. = - Q  pi 
1 p1 = fxl 

p . = f  + P i 2 2  
1 X. 2 i-1 ’ 

1 If,, 1 
A i-1 

in which the scalar parameter Q governs the magnitude of the step, and is 

obtained by seeki ng out the one-dimensional minimum of f( x - Q p ) regarded 

as a function of 01. 

The Davidon variable metric algorithm also generates conjugate direc- 

tions, given by 
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AX. = - C Y  H f 
1 i i x. 

1 

Hi = 
A x L  Af i-1 x 

i-1 

Af Af  Hi,l Hi-l x i-1 X i-1 

h f T  Hi-1 x hf 
X i-1 i-1 

9 i 2 2  

Here H is a matrix and H is specified as a positive definite symmetric 

matrix. The scalar a. is again obtained by one-dimensional minimization. 
1 

1 

These methods are described in Refs. 1 through 4 and the variational 

equivalent of the conjugate gradient method in Ref. 5. 

There have been various methods proposed which attempt to approximate 

the second partial matrix or its inverse and to employ it in a Newton's method 

scheme, avoiding altogether ideas of conjugacy and the need for one-dimensional 

minimizations. Such schemes encounter difficulty in retaining positive definiteness 

of the metric and in magnification of numerical errors,  consequently are not con- 

sidered sufficiently well developed for serious consideration at present. 
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TREATMENT OF CONSTRAINTS 

If the minimization problem includes subsidiary conditions of the form 

g( x)  = 0 ,  where g is an m-vector, neither method applies directly. One 

approach to handling of constraints is penalty function approximation, the 

formation and minimization of the function 

m 
2 

f = f + ' C  k.g.  
J 3  

- 
2 

j= l  

where the constants k > 0 are taken "large!' The solution of this problem ap- 

proaches that of the original as k.4" if both exist and are uniquely defined. 

This device effectively converts the problem to an unconstrained one, to which 

any of the conjugate direction algorithms is then applicable. 

J 

A second approach regarded as standard is gradient projection. In the 

case of functions g( x )  which are linear in x , the constraint surfaces are 

hyperplanes and their intersection a linear space of smaller dimension, n - m , 
and the scheme proceeds by using any of the gradient algorithms on the projec- 

tion of the gradient vector upon this subspace. This procedure is clearly equiva- 

lent to elimination of variables by use of the constraint equations. 

In the case of nonlinear constraints , projection employs the locally tan- 

gent constraint hyperplanes. If large steps are taken in the negative projected 

gradient direction, provision must be made to deal with large constraint Wio- 

lations!' This difficulty is ordinarily overcome with conventional gradient 

methods simply by limittng the step magnitude to that for which constraint vio- 

lations remain within prescribed bounds, and later correcting the violations by 

some separate means. The same situation, met with conjugate direction methods 

which are inherently large step methods, poses greater difficulty and will next be 

examined. 

4 



In addition to the difficulty of terminating one-dimensional searches 

and correcting constraint violations, there is a more basic difficulty arising 

with projection when the use of conjugate direction methods is attempted. 

This is the preservation of conjugacy of steps in any sense, in view of the 

shifting from one step to the next of the subspace defined by the intersection 

of constraint tangent hyperplanes. Both questions are in the research category 

and outside the scope of the presently reported study. While the writers can 

offer a suggestion for a modification of the search to take constraint violations 

into account, they regard the conjugacy question as decidedly nontrivial, and 

note that successful treatment of - both questions would be required for attainment 

of anything like n-step convergence. 

Briefly, the search termination difficulty is that a one-dimensional mini- 

mum will  generally not exist in a straight-line search violating the constraints 

unless the function f possesses a minimum in the absence of constraints, which 

is, of course, a highly undesirable restriction. Failure of the one-dimensional 

search to terminate on a minimum could be remedied in the early iterations by 

terminating on constraint violations reaching prescribed bounds, but eventually 

there must be a one-dimensional minimum attained on each successive step to sup- 

port any sort of n-step convergence argument based upon conjugacy. 

It is suggested that this difficulty might be circumvented by searching on 

the corrected function 

where 

f + X g  

'F 
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which contains a term correcting approximately for violations of a single con- 

straint g = 0 based upon a linear trade-off defined by directional derivatives 

of the functions f and g along the normal to the constraint. The scalar X 
becomes independent of the metric A as the constrained minimum is approached. 

It can be shown that if the constrained minimum is a "well defined" one, in the 

sense that the strengthened inequality 

for all 6x such that 

T gx 6x = 0 

applies, then the function f + X g will exhibit a minimum along the direction of 

search once a sufficiently small neighborhood of the constrained minimum has 

been reached. The correction term x g  is a kind of linear penalty term that 

provides a good approximation to the ffcostfl of correcting a constraint violation. 

While a linear penalty scheme will  generally be unsuccessful, the assumed close- 

ness of the minimum and the search starting in the tangent hyperplane permit its 

use here. 
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SPLINE PARAMETERIZATION OF CONTINUOUS CONTROL PROGRAMS 

The control variables in the usual aircraft flight equations are continuous 

functions of time. Most of the methods being discussed here require that these 

control functions be parameterized. There are two alternatives; one to super- 

impose a finite number of continuous functions defined over the whole interval, 

another to use different continuous functions in a sequence of subintervals. In 

the first case, one might use N orthogonal functions. In the second case, one 

would choose N subintervals and impose conditions at the junction times. 

The great disadvantage of using complete interval functions is that it 

could easily take quite a large number of functions to adequately represent a 

particular short interval fluctuation. In the aircraft trajectory problem, the 

climb is both most critical and most sensitive, and some controls will have 

important rapid variations. The cruise interval, however, is flown nearly in 

equilibrium. The overall control histories will be far from any representation 

by a small number of simple orthogonal functions. 

The use of N subintervals can also require large N i f  the choice of 

intervals and functions is crude. For example, using piecewise constant con- 

trol in each computing interval would seem unwise, for with the same number 

of parameters, one could use continuous piecewise linear control. Still, the 

number of integration intervals tends to be significantly larger than parameter 

optimization programs can readily handle. It is important to keep the number 

of subintervals down to the order of ten or twenty, and it would seem that piece- 

wise linear controls over these larger intervals would be too crude. 
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An attractive compromise between number of parameters and overall 

smoothness of the resulting control is the use of splines. For the aircraft tra- 

jectory problem, the cubic spline is especially appealing. In each subinterval, 

the function is a cubic polynomial. The coefficients are restricted so as to force 

the function and its first and second derivatives to be continuous at the junction 

points. With N subintervals, there are N + 3 parameters to be specified: N + 1 

values of the function itself at the junction (and end) points, plus two end conditions. 

These values plus the junction continuity conditions determine all the polynomial 

coefficients. Higher order splines with correspondingly greater smoothness at 

the junction points are also straightforward to calculate, but continuity of second 

derivatives would appear to be adequate for any of the aircraft control histories. 

The great advantage of the spline is that it allows significant short interval fluc- 

tuations without unduly increasing the total number of parameters required to 

represent the function. 

Let us consider how a particular control function, say u( t ) ,  is approximated 

are chosen, then values u. 1 = ~ ( t . ) .  1 The - - - , t by a cubic spline. Times 5 , tl , 
spline approximation is described by 

N 

2 M. h. t.-t 3 3 
-3 (t.-t) (t-t.-l) 

j 6h. + (uj-1- 6 h. J u( t )  = M - + M  j-1 6h. 
3 J 

The M. values may be seen to be second derivatives of u at t . The continuity 

conditions require them to satisfy 
J j 
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- - 0 0 - -  M 
0 

M1 

M2 

- 0 0  

- 0 0  

- - 

‘N-2 0 MN-2 

CLN-1 ’N-1 %-1 

O llN 2 - _  MN - 

A 0  
0 

2 p2 

- 
d 

-7 

0 

dl 

d2 

dN-2 

dN-l  

, dN - 

0 -  

0 -  

0 -  

- 
2 

Ell  
0 

0 

0 

0 - 

where 

, j = 1 , 2 , -  - - , N  d. = 
h. 

J 

and 

h = t  - t  j j j-1 

, j = 1 , 2 , -  - - , N  hj+l 
j 

’j= h. + hj+l ’ p j = l - x  
J 

The end conditions enter through the first and last of the N+l  simultaneous 

equations. 

In addition to the N + l  u. values, two other numbers must be specified 
1 

to allow solution of the M. equations. The choice is non-unique. A simple 
1 

procedure is to (arbitrarily) set A. and % each equal to - 2 ’  
d 

matrix form as 

J 
and let do and 

be the two additional parameters. Writing the simultaneous equations in 
N 

A M  = d 
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the (N-tl) x (N+l)  matrix A is then completely known, and the (N+l)-vector d 

is determined by the ui, do and dN. 

In general, the terminal time is not specified. One could treat this 

additional parameter directly, but it seems wiser to use the stretching device 

due to Long [71. The complication of letting t 

become large, with u still forced to be cubic in the last interval t - t 
or, perhaps worse, t 

it would be necessary to change the number of parameters. In an ordinary 

gradient method, this would be easily done. In a conjugate gradient method, 

however, it would require restarting the algorithm and losing the beneficial 

conjugacy of the previous steps. 

vary directly is that it might N 

N N-1' 
might tend to become less than tN 1. In either case, - N 

Long's suggestion was  to normalize the time so as  to keep the final time 

equal to one. This is done by a simple scaling, say t = fit', when t' = 1. All 

differential equations are written in terms of t' , with the parameter fi appearing 

explicitly, e. g. 

N 

dV dt dV dV 
dt' dt dt' dt - - f i  - -  - - =  

The input time values t: range from 

optimization. This stretching device 
1 

zero to one, and are fixed throughout the 

keeps the relative spacing of the t. intact, 
J 

and simultaneously stretches the cubic of each interval. This seems decidedly 

preferable to adjusting only the last interval. The control is calculated as  a 

function of t' , which is immediately converted to a function of t after the 

optimization is complete. 

For any gradient method, the calculation of the gradient is of central 

interest. In this case we have as many as  four control functions, with N+3 

10 



values of u., d , d 

/3 is a single additional parameter, resulting in performance index and con- 

straints dependent on 4(N+3) + 1 quantities. The gradient we seek, then, has 

up to 4(N+3) -I- 1 components. 

for the parameterization of each. The scaling parameter 
I O N  

We focus again now on the fYypicalfr control function u( t ) , spline pa- 

rameterized through u. , do, dN . The gradient components corresponding to 

these parameters are found using a straightforward variation of the usual adjoint 

equation procedure. Let us write the equations of motion in vector form 

1 

where y includes position, velocity, mass and u represents the control. The 

adjoint differential equations (in matrix form) are then 

i = -(%) a f  x 

With time non-dimensionalized, we have 

* = 9Y dt = p q y ,  u ,  t )  
dt' dt dt' 

dX dX dt a f  - - -- = &-) x dt' - dt dt' 

Adapting the usual procedure, small variations 6y about a reference trajectory 

satisfy 

4- (XT6y) = SAT 2 6u(t ' )+ ATf6/3 dt' 
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The A( t') and af (t') functions appear as usual, leaving us only with the 

detail of expressing 6u in terms of parameter variations. Examining the 

equation for u (now as a function of t'), we see a dependence on M. , M 

u. and u 5 t's t: . Note that the t: and h. (now 

taken as t' - t: ) are all fixed. In this interval, then, 

au 

J j-1' 
in the interval t' 

J j-1 j -1 3 3 J 

j 3-1 

2 2  t: - t' t' - t: 
6U = L[(t!-t')2-h2]6M 6h. J 3 j-1 + -[(t'-t' 6h. j -1 ) -h.](jM. J J 

J J 

t! - t' t' - t: 
+ - 6u -I- J-16u. 

h. j-1 h. J 3 J 

But recalling AM = d 

N 

k=O 

so that 

N 
6M. 1 = 1 (A-'ik6dk 

k=O 

i = O , l ,  - - - , N  

Further, 6%, for 1 2  ksN-1, depends on 6u. v&;Ies as fc 
1 

Lows: 

By successively substituting for 6M in terms of 6d and for (most of) 6d 

in terms of 6ui , we obtain an expression for 6u entirely in terms of 6u. 

6do and 6dN. In the interval t: 
1' 

s t'* t: 
J -1 J 
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6 )( 6uk+l- 6uk - '%- 6Uk-1 ) t: - t' N-1 
6u = [(t: - t')2- hr][ 1 (A-'). ( 

J J k=l hk+ hk+l hk+l hk 

t' - t: N-1 6 )(6uk+l- 6"k - 'Uk- 6uk-l) 

hk 
+ A [ ( t ' -  t! )2- hy][c (Am1) ( 

6 h. J 3 -1 k=l j ¶ hk+ hk+l hk+l 

tI- t' t' - t: 
j -1  h. 

j J 
+ (A-lj, 6do -i- (A-'), 6d ] + e 6u + A 6u. J 

J , N  N 

From this expression for 6u 

6d 

the coefficients of each 6u. and of 6do and 
1 

are selected by inspection and may be denoted as N 

respectively. Then 

N 
d T  au au - ( A  6y) = 6/3 dt' 

0 i = O  

aQ , and noting that y ( 5 )  is assumed T Upon integrating, choosing X (t' )= 

fixed, we have 
ay(tN) 

1 1 
6Q = f?[s j3XTafaUdt']dui+[/ / 3 X T g ~ d t ' ] 6 d  0 

0 
au du. i=o 0 1 0 
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aQ bQ a and b&_ as the coefficients of Now, by inspection, we have - ai3 aui 9 ado adN 

Su., 6d , Sd and S/3 respectively. i o N  

Programming alterations required by the spline approximation are not 

especially complex, being mostly add-on in nature. The equations of motion 

and the adjoint equations each are multiplied by the constant f l  due to time non- 
b f  dimensionalization. In addition to the - vectors already programmed, the 
bU hi - etc. expressions must be programmed. The integrals for - aQ , etc. 

au 9 bUi 
must also be programmed. 

If all constraints are treated by penalty functions, Q is the augmented 

performance index. When additional functions are considered, as  in gradient 

projection, the sarne equations are used. Only the h (t') solutions differ, re- 

quiring additional evaluations of the same integrals. 

Bounds on a control function may be included with spline approximations, 

either with integral penalty functions or directly, leading to side constraints on 

the ui , do , dN values. The integral penalty function needs no further elabora- 

tion. Consider next a direct constraint treatment. 

. (These bounds 

could be different in each interval, but the situation would be substantially corn- 

plicated if the bounds were to vary arbitrarily in time. ) For the cubic employed 

for the interval t' 5 t' 5 t! , u has a maximum value. This value can be de- 
du J du termined by setting 7 equal to zero and solving for t'. As u is cubic, - dt' du dt 

wil l  be quadratic in t'; hence there will be possibly two zeros of 7 . If both dt 
roots are real, one corresponds to a local minimum and one to a local maximum. 

(The formulas for these times may be programmed explicitly. ) Either the 

and urnin max Suppose that u(t') is to be bounded by u 

j -1 
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maximum, if it occurs within the interval, o r  u or u. is the largest u 

in the interval. These three values must be compared against u the 

analogous three against u 

largest value is greater than u 

must be made in ui , do, dN , As may be readily observed, u( t )  is linear 

in u. and M - hence in u. . Thus, each u( t*) value which would 

have exceeded u 

The exact analogy holds for u 

of several such linear constraints coming from different intervals. The 

parameterized optimization problem, then, is one with a number of linear in- 

equality constraints. As is usual in such problems, the question of which con- 

straints are to be equalities and which ignored must be considered at each cycle. 

For this reason it may be preferable to use integral penalty functions, which 

appears to be necessary (or at least desirable) anyway, if a conjugate gradient 

method is to be used. 

j -1 3 

max’ 
If, for any intended forward integration, this min’ 

(at time, say, t*), some adjustment max 

1 i ’  1 ’  do’ dN 
results in a linear constraint involving u. do’ dN. max 

What could happen, then, is a collection min’ 

In the interest of numerically verifying the workability of cubic spline 

parameterization, a complete function minimization program has been prepared. 

The dynamic system is academic in nature. A linear system with quadratic 

performance index was chosen, so that it would be possible to compare the op- 

timized spline against the exact optimum (obtainable by a direct computer cal- 

culation) i f  desired. 

The system is described by 

jT2 = u 

Minimize {cyl( tN) - 112 + cy,( tN)I2 + 
rn I 

cy, 2 + (cos 2 6 t )y  2 +(sin 2 6 t )u  2 Idt)  
2 

0 
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The problem is to choose u( t )  and the 

1 
mance index indicated. The initial y 

T >  0. 

final time T to minimize the perfor- 

would be chosen large enough to insure 

N o  change in the parameter optimization algorithm was required to use 

spline approximation of the control. Hence, the new programming required 

involved mainly the evaluation of the performance function gradient with respect 

to the spline parameters (and T).  The program has been coded and is in  the 

initial checkout phase as of this writing. 
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RECOMMENDED FEATURES FOR AIRCRAFT FLIGHT PATH OPTIMIZATION 

COMPUTER PROGRAMS 

We recommend two combinations of features for possible incorporation 

into existing first order computer programs. The first of these is selected to 

provide more rapid convergence with the least revision of existing programs. 

The second describes our choice as to the most promising program for accelera- 

ting convergence, in terms both of sureness and efficiency, 

In the first combination, the following are unchanged: 

The equations of motion 

The adjoint equations, and the impulse response functions 

The tabular representation of continuous control variables 

The numerical integration schemes for both forward and 
backward integrations 

The essential change, use of the (continuous conjugate gradient algorithm, 

requires 

Penalty function treatment of all constraints 

Storage of an additional vector of time functions, dimen- 
sionally equal to the (continuous) control vector 

Extended precision arithmetic (16 or  more decimal digits) 

The second recommendation suggests combining the most promising new 

developments in function minimization techniques into an essentially new pro- 

gram. Some features are moderately well established, others are very promising 

on theoretical grounds, although not well tested numerically, It appears that 

some separate pretesting of the newest developments would be preferable to an 

immediate move to a complete new program. This second combination modifies 
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nearly every portion of a conventional gradient program. The two main inno- 

vations are the 

Parameterization of the control functions to allow use 
of the Davidon function minimization algorithm 

Use of a compatible adjoint scheme to achieve much 
greater numerical accuracy of the payoff function 
gradient (Ref. 8) 

The former, in its recommended form, requires 

The use of a (cubic) spline approximation routine to 
allow control variable evaluations in terms of N+3 
parameters (each). 

The Davidon variable metric algorithm routine 
(strictly algebraic) 

sionalize the time and conveniently allow unspecified 
terminal time 

The use of Long's stretch factor device to nondimen- 

Penalty function treatment of constraints, with refine - 
ment by the approximation to Newton's method of 
Ref. 9. 
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REVISIONS REQUIRED FOR ATMOSPHENC FUGHT GRADIENT PROJECTION 

COMPUTER PROGRAMS 

In the following, we list the revisions required to implement the two sets 

of recommendations just outlined for existing gradient projection computer pro- 

grams. The three-dimensional atmospheric flight program for supersonic trans - 
port trajectory optimization, described in Ref. 11, is of particular interest since 

it is in current use by NASA Langley Research Center, the sponsor of the present 

study, and consumes large amounts of computer running time in its present form, 

Revisions for Combination One 

1. 

2. 

Extend arithmetic precision to sixteen or more decimal digits. 

Code penalty function transversality conditions for terminal 
adjoint variable determination. 

Reduce the number of backward adjoint system evaluations to 
one , using these terminal conditions. 

Delete the evaluation of projection integrals , terminal constraint 
multiplier evaluations, and projection step-size logic. 

Provide additional storage for control functions corresponding 
to the second member of the conjugate gradient formula. 

Program the conjugate gradient algorithm, including evaluation 
of auxiliary integrals needed and provision for restart. 

Add a one-dimensional search routine (e. g. , Ref. 12) and 
orthogonality correction (Ref. 10). 

Program checkout and provision for diagnostic tests. 

3. 

4. 

5. 

6. 

7. 

8. 
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Revisions for Combination Two 

1 & 2. Same as for preceding Combination One. 

3. Provide for storage of the state vector as a function of time 
at fixed integration time steps. 

Derive difference adjoint equations for the integration scheme 
used and code, providing for a single backward adjoint 
"integration." 

representation. 

4. 

5. Delete control function tables and replace with cubic spline 

Incorporate time scale stretch factor. 

Evaluate gradient with respect to spline parameters and code. 

Program accelerated gradient algorithm, including a one- 

6. 

7. 

8. 
dimensional search, orthogonality correction, penalty 
coefficient adjustment, and refinement scheme, possibly 
adopting routines developed for the work of Refs. 8, 10 
and 12. 

9. Program checkout and provision for diagnostic tests. 
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RATIONALE AND OUTLOOK FOR THE RECOMMENDED COMBINATIONS O F  

FEATURES 

Both recommended combinations include penalty functions and extended 

precision arithmetic, based upon the experience of Refs. 9 and 10. We have 

been somewhat reluctant to conclude that the gradient projection scheme does 

not extend to nonlinear constraints when accelerated gradient methods are  used 

and, accordingly, have devoted some attention to review of the problems en- 

countered and possible means of circumventing them, as reported in an earlier 

section. Whatever may be possible here is clearly a matter for research and 

experimentation on simple examples, and any scheme emerging will  be well 

behind the penalty function version, which has been subjected to extensive testing 

in parameter optimization applications work. 

For Combination One , the programming requirements are  modest. 

Penalty function treatment of terminal as well  as in-flight constraints is a 

trivial alteration. The additional function storage is simply in parallel with 

existing storage. Depending on the computer software, the extended precision 

could be as simple as a single card insertion, or  as troublesome as redefining 

every variable as a double precision quantity. The clear advantage of Com- 

bination One is the retention of most of the existing programming with modest 

additions which, taken alone, should not be disruptive. The additional storage 

required, however, may cause overflow in computers having the standard 32K 

eight-digit word capacity. 

The eventual gain using the conjugate gradient routine is uncertain. In 

general, it would be safe to say that the number of cycles required to reach a 

given value (close to the minimum) of the augmented performance index (con- 

straints adjoined as penalty terms) wil l  be less with a conjugate gradient than 
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with a "regular" gradient program. Computer time comparisons cannot yet be 

safely made, primarily because the high accuracy required by the method may 

force reduction in computing intervals to bring truncation error  to acceptable 

levels. While the continuous conjugate gradient method has been used to a limited 

extent in modest test problems with some success, there is no experience with 

programs approaching the complexity and extent of the SST program, and so there 

is an element of gamble even in proceeding with this relatively modest modification. 

Each of the several requirements of Combination Two has its own neatly 

separate programming and no one item is particularly complex or  formidable. 

As a result of the non-dimensionalization of time, the stretching parameter be- 

comes a simple multiplicative factor in the equations of motion, and the straight- 

forward means of making use of existing programming would be to evaluate the 

time derivatives as presently done, then multiply each by the common stretch 

factor. 

The most substantial new programming required would be the difference 

adjoint routine which produces compatibility between the computed function samples 

and the computed gradient of the function, in the sense that both reflect the ap- 

proximation made in integrating the state via whatever finite difference scheme 

has been adopted. The details have been worked out for the Kutta-Merson inte- 

grator in Ref. 8, and the corresponding derivation for the Runge-Kutta case should 

be quite similar. Restating the case for the difference, or "compatible," adjoint, 

it is that the partial derivatives of the terminal state with respect to trajectory 

parameters are accurate representations of the partials of the terminal state as 

calculated through the integration model. 

As with Combination One, extended precision arithmetic is necessary to 

exploit the accelerated convergence potential, because of the vulnerability of 
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conjugate direction algorithms to numerical error (Ref. 10). The compatible 

adjoint, however, promises to alleviate the need for smaller computing intervals, 

in fact to suggest a sequence of two or even three optimizations, starting with a 

very large computing interval and finishing with the normally acceptable interval. 

This is because the compatible adjoint routine completely compensates for trun- 

cation error  in the trajectory, as its derivation explicitly involves the forward 

integration routine equations. 

By using a finite number of parameters (order ten) for each control func- 

tion, convergence to a minimum will  eventually be quadratic, and it is also likely 

that the neighborhood of the minimum will  be reached in fewer cycles than the 

conventional gradient or  gradient projection algorithm. The compatible adjoint 

may, through use of larger computing intervals, reduce the total computing time 

by a factor of three or more. The parameterization features are by now sufficiently 

understood so that no major risk is likely in programming them. The power of the 

compatible adjoint routine is not well tested, however, and it is recommended that 

a program for a simple problem might well be first prepared for experimentation. 
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CONCLUDING REMARKS 

The recommendations advanced herein reflect the current judgment of 

the writers, based upon their recent research. It is thought that trials on a 

somewhat smaller scale than the three-dimensional, multi-control, multi- 

constraint supersonic transport trajectory optimization problem might be ap- 

propriate before undertaking revisions of the SST program, in order to prove 

out the proposed combinations of features. This might apply particularly to 

the second combination, which incorporates a considerable number of innovations. 

Possibly a two-dimensional, atmospheric, single control variable (attitude) model 

would be of about the proper degree of complexity, yet result in a computer pro- 

gram having some usefulness in itself, apart from its value as  a test bed. 
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